Overfitting: 5 Ways to Stop Curve Fitting & Over‑Optimization

※記事内に広告を含む場合があります。

1. What is Overfitting?

Definition of Overfitting

Overfitting refers to the phenomenon where a model becomes overly tailored to the training data, resulting in inaccurate predictions on unseen data (such as test data or real-world operational data). This is a common issue in data analysis and machine learning, especially with predictive models and automated trading systems.

In simple terms, it refers to a state where one is overly fixated on past data and cannot adapt to future data.

Reasons Why Overfitting Occurs

Overfitting is more likely to occur in the following situations:

  • Overly Complex Models: Models with an unnecessary number of parameters tend to learn the fine details of the training data.
  • Insufficient Data: When training data is scarce, models tend to overlearn the limited data patterns.
  • Overreacting to Noise: Models may learn the noise in the training data and treat it as important information.

Relationship with Curve Fitting

Curve fitting refers to applying a formula or function optimized for a specific dataset, but if taken too far, it becomes overfitting. In particular, excessive curve fitting fails to reflect general data trends and instead draws a curve specific to that particular dataset.

2. Risks of Over-Optimization

What is Over-Optimization?

Over-optimization refers to the state where a model or parameters are overly optimized for data used in backtesting, resulting in an inability to achieve expected results in real operational environments. This can also be considered a form of overfitting.

Specific Risks of Over-Optimization

  • Performance Degradation in Live Operations: Even if backtests show high results, the system may fail entirely on unseen data.
  • Decline in Predictive Accuracy: Models that rely on specific data cannot correctly predict new data patterns.
  • Waste of Resources: Even if significant time and cost are spent on development and operations, the results may ultimately be useless.

Areas Where Over-Optimization Is Particularly Problematic

  • FX Automated Trading: When a system is optimized based on historical market data, it may fail to adapt to changing market conditions.
  • Machine Learning Models: Over-optimized algorithms may be accurate on training data but exhibit high error rates on real data.

3. Measures to Prevent Overfitting

Adopting Simple Models

Limiting model complexity is one of the most effective ways to prevent overfitting. For example, the following approaches are available:

  • Limit the number of parameters
  • Remove unnecessary variables
  • Adopt simple algorithms (e.g., linear regression)

Conducting Out-of-Sample Tests

By clearly separating training data from test data, you can evaluate the model’s generalization performance. Testing the model on ‘new’ data not present in the training set allows you to verify the possibility of overfitting.

Utilizing Cross-Validation

Cross-validation is a method that splits the dataset into multiple parts and alternately uses each part as test data and training data. This technique allows for model evaluation that is not biased toward any particular portion of the data.

Thorough Risk Management

By strengthening risk management, you can minimize losses due to over-optimization. Specifically, the following methods are effective:

  • Limit position size
  • Set stop-loss orders
  • Execute trades based on pre-defined rules

4. Real-World Cases and Success Stories

Examples of Successful Models

In one machine learning model, adopting a simple linear regression yielded better real-world results than a complex neural network. This is because the model was designed to prioritize generalization performance.

Examples Where Countermeasures Took Effect

In a specific FX automated trading system, using cross-validation and simple parameter settings enabled performance in live operation that was almost identical to past backtests.

5. Summary

Overfitting and over-optimization are common challenges in data analysis, machine learning, and FX automated trading. However, by understanding these risks and implementing appropriate countermeasures, you can significantly improve performance in real-world operations. Actively adopt simple models and techniques such as cross-validation, and apply them to your own projects.

Related Articles

目次 1 1. Giriş2 2. MathAbs Fonksiyonu Nedir?2.1 Temel Sözdizimi2.2 Örnek3 3. MathAbs Fonksiyonunun Temel Kullanımı3.1 Fiyat Farkının Mutlak Değerini Hesaplama3.2 Dizi Değerlerini Mutlak Değerlerine Dön […]

目次 1 บทนำ2 พื้นฐานของ MQL4 และ MQL53 ข้อดีของการตรวจสอบบัญชี3.1 เพิ่มความปลอดภัยให้กับ EA3.2 ข้อดีของการจำกัด EA ให้ทำงานเฉพาะบัญชีที่ระบุ3.3 ป้องกันการใช้งานโดยไม่ได้รับอนุญาต4 วิธีดึงหมายเลขบัญชีใน […]

目次 0.1 はじめに0.2 EA販売における法令遵守の重要性と具体的な対策0.3 合法か?違法か?海外FX IBのビジネスモデルとそのリスク0.4 違法行為の闇 -国内FX会社を狙う海外FX誘導の実態-0.5 まとめと今後の展望1 参考サイト はじめに FX自動売買に関心を持つ皆様へ、この記事ではエキスパートアドバイザー(EA)の販売、海外FX IBのリスク、そして国内FX会社を狙う違法行為の実 […]

目次 1 1. บทนำ2 2. เกี่ยวกับฟังก์ชัน OrderSend2.1 โครงสร้างพื้นฐานของฟังก์ชัน OrderSend2.2 ค่ากลับพื้นฐาน2.3 บทบาทของฟังก์ชัน OrderSend3 3. รายละเอียดอาร์กิวเมนต์ของฟังก์ชัน OrderSend3.1 คำอธิบายรายละเอ […]

目次 1 1. Pendahuluan2 2. Apa itu fungsi MathRound?2.1 Informasi dasar fungsi MathRound2.2 Alasan memilih fungsi MathRound3 3. Cara dasar penggunaan fungsi MathRound3.1 Contoh fungsi MathRound3.2 Detail […]

※記事内に広告を含む場合があります。
佐川 直弘: MetaTraderを活用したFX自動売買の開発で15年以上の経験を持つ日本のパイオニア🔧

トレーデンシー大会'15世界1位🥇、EA-1グランプリ準優勝🥈の実績を誇り、ラジオ日経出演経験もあり!
現在は、株式会社トリロジーの役員として活動中。
【財務省近畿財務局長(金商)第372号】に登録
され、厳しい審査を経た信頼性の高い投資助言者です。


【主な活動内容】
・高性能エキスパートアドバイザー(EA)の開発と提供
・最新トレーディング技術と市場分析の共有
・FX取引の効率化と利益最大化を目指すプロの戦略紹介

トレーダー向けに役立つ情報やヒントを発信中!

This website uses cookies.