1. Overfitting ni Nini?
Ufafanuzi wa Overfitting
Overfitting inahusu hali ambapo model inajifunza sana data ya mafunzo, na kusababisha utabiri usio sahihi kwenye data isiyojulikana (kama data ya majaribio au data ya uendeshaji halisi). Hii ni tatizo la kawaida katika uchambuzi wa data na ujifunzaji wa mashine, hasa katika miundo ya utabiri na mifumo ya biashara ya kiotomatiki.
Kwa maneno rahisi, inamaanisha hali ambapo mtu amejikita sana kwenye data ya zamani na hawezi kuzoea data ya baadaye.
Sababu za Kutokea kwa Overfitting
Overfitting huwa hutokea katika hali zifuatazo:
- Miundo ya Juu Sana : Miundo yenye idadi isiyo ya lazima ya vigezo huwa inajifunza maelezo madogo ya data ya mafunzo.
- Data Isiyotosha : Wakati data ya mafunzo ni chache, miundo huwa inajifunza kupita kiasi mifumo ya data ndogo.
- Kujibu Kupita Kiasi kwa Kelele : Miundo inaweza kujifunza kelele katika data ya mafunzo na kuichukulia kama taarifa muhimu.
Uhusiano na Curve Fitting
Curve fitting inahusu kutumia fomula au kazi iliyoboreshwa kwa seti maalum ya data, lakini ikichukuliwa kupita, inakuwa overfitting. Hasa, curve fitting kupita kiasi haina uwezo wa kuakisi mwenendo wa jumla wa data na badala yake huchora mkondo maalum kwa seti hiyo ya data.
2. Hatari za Over-Optimization
Over-Optimization ni Nini?
Over-optimization inamaanisha hali ambapo model au vigezo vimeboreshwa kupita kiasi kwa data iliyotumika katika backtesting, na kusababisha kutoweza kupata matokeo yanayotarajiwa katika mazingira halisi ya uendeshaji. Hii pia inaweza kuchukuliwa kama aina ya overfitting.
Hatari Maalum za Over-Optimization
- Kudhoofika kwa Utendaji katika Uendeshaji wa Moja kwa Moja : Hata kama backtests zinaonyeshaokeo mazuri, mfumo unaweza kushindwa kabisa kwenye data isiyojulikana.
- Kupungua kwa Usahihi wa Utabiri : Miundo inayotegemea data maalum haiwezi kutabiri kwa usahihi mifumo mipya ya data.
- Upotevu wa Rasilimali : Hata kama muda na gharama kubwa vinatumiwa katika maendeleo na uendeshaji, matokeo yanaweza hatimaye kuwa yasitumiki.
Maeneo Ambapo Over-Optimization Ni Tatizo Maalum
- Biashara ya Kiotomatiki ya FX : Wakati mfumo umeboreshwa kulingana na data ya soko la kihistoria, unaweza kushindwa kuzoea mabadiliko ya hali ya soko.
- Miundo ya Machine Learning : Algoritimu zilizoboreshwa kupita kiasi zinaweza kuwa sahihi kwenye data ya mafunzo lakini zinaonyesha viwango vya juu vya makosa kwenye data halisi.
3. Hatua za Kuzuia Overfitting
Kutumia Miundo Rahisi
Kudhibiti ugumu wa model ni mojawapo ya njia bora za kuzuia overfitting. Kwa mfano, njia zifuatazo zinapatikana:
- Punguza idadi ya vigezo
- Ondoa vigezo visivyohitajika
- Tumia algoriti rahisi (kwa mfano, regression ya mstari)
Kufanya Majaribio ya Nje ya Sampuli
Kwa kutenganisha wazi data ya mafunzo na data ya majaribio, unaweza kutathmini utendaji wa ujanibishaji wa model. Kujaribu model kwenye data ‘mpya’ ambayo haipo katika seti ya mafunzo kunakuwezesha kuthibitisha uwezekano wa overfitting.
Kutumia Cross-Validation
Cross-validation ni njia inayogawanya seti ya data katika sehemu kadhaa na kutumia kila sehemu kwa mfululizo kama data ya majaribio na data ya mafunzo. Mbinu hii inaruhusu tathmini ya model isiyo na upendeleo kwa sehemu yoyote maalum ya data.
Usimamizi wa Hatari wa Kina
Kwa kuimarisha usimamizi wa hatari, unaweza kupunguza hasara zinazotokana na over-optimization. Hasa, mbinu zifuatazo ni bora:
- Punguza ukubwa wa nafasi
- Weka maagizo ya stop-loss
- Fanya biashara kulingana na sheria zilizobainishwa awali
4. Mifano ya Maisha Halisi na Hadithi za Mafanikio
Mifano ya Miundo Iliyofanikiwa
Katika model moja ya machine learning, kutumia regression ya mstari rahisi kulileta matokeo bora katika dunia halisi kuliko mtandao wa neva tata. Hii ni kwa sababu model ilibuniwa kutilenga utendaji wa ujanibishaji.
Mifano Ambapo Hatua za Kuzuia Zilizofanya Kazi
Katika mfumo maalum wa biashara ya otomatiki ya FX, kutumia uchambuzi wa upimaji wa upimaji (cross-validation) na mipangilio rahisi ya viparameter ilileta utendaji katika operesheni halisi ambao ulikuwa karibu sawa na majaribio ya nyuma yaliyopita.
5. Summary
Kukosa kuendesha juu (overfitting) na kuendesha juu sana (over-optimization) ni changamoto za kawaida katika uchambuzi wa data, kujifunza mashine, na biashara ya otomatiki ya FX. Hata hivyo, kwa kuelewa hatari hizi na kutekeleza hatua za kupambana zinazofaa, unaweza kuboresha utendaji kwa kiasi kikubwa katika operesheni za dunia halisi. Weka kwa nguvu mifano rahisi na mbinu kama cross-validation, na utumie kwa miradi yako mwenyewe.
Related Articles
目次 1 1. Giới thiệu2 2. Cơ bản của hàm MathSqrt2.1 Cú pháp và tham số2.1.1 Tham số:2.1.2 Giá trị trả về:2.2 Ví dụ sử dụng cơ bản2.3 Lưu ý: Xử lý giá trị âm3 3. Ví dụ sử dụng hàm MathSqrt3.1 Ví dụ tính […]
FX自動売買を行う上で、簡単にカスタマイズされた自動売買システム(EA)を作成できるツールとして、EAつくーるが注目されています。本ブログでは、EAつくーるの特徴や概要、メリット、評判・口コミ、できること・できないことについて詳しく解説します。プログラミング知識がなくても、自分専用のEAを作成できる便利なツールとして、その魅力に迫ります。 https://youtu.be/eXe6JNzVzIE? […]
目次 1 1. Giới thiệu2 2. Hàm MathRound là gì?2.1 Thông tin cơ bản về hàm MathRound2.2 Lý do chọn hàm MathRound3 3. Cách sử dụng cơ bản của hàm MathRound3.1 Ví dụ hàm MathRound3.2 Chi tiết quy tắc làm tr […]
目次 1 初めに2 MQL4とMQL5の基本3 アカウント認証のメリット3.1 EAのセキュリティ向上3.2 特定の口座でのみEAを動作させる利点3.3 不正利用防止4 MQL4における口座番号取得方法4.1 AccountNumber()関数の使用方法4.2 取得したアカウント番号の活用例5 MQL5における口座番号取得方法5.1 AccountInfoInteger(ACCOUNT_LOGIN […]
目次 1 1. 前言2 2. MathSqrt 函數的基本2.1 語法與參數2.1.1 參數:2.1.2 回傳值:2.2 基本使用範例2.3 注意事項:負數的處理3 3. MathSqrt 函數的使用範例3.1 從平均值計算分散的範例3.1.1 這段程式碼的重點:3.1.2 結果:3.2 波動率分析的應用3.2.1 這段程式碼的重點:3.2.2 結果:3.3 實務應用提示4 4. 錯誤處理與注意事 […]