โอเวอร์ฟิตติ้งคืออะไร? วิธีป้องกัน 5 วิธี

1. อะไรคือการโอเวอร์ฟิตติ้ง?

นิยามของการโอเวอร์ฟิตติ้ง

โอเวอร์ฟิตติ้งคือปรากฏการณ์ที่โมเดลพอดีกับข้อมูลฝึกมากเกินไป ทำให้ไม่สามารถทำการทำนายที่แม่นยำกับข้อมูลที่ไม่รู้จัก (ข้อมูลทดสอบหรือข้อมูลการใช้งานจริง) ได้ นี่เป็นปัญหาที่พบบ่อยในงานวิเคราะห์ข้อมูลและการเรียนรู้ของเครื่อง โดยเฉพาะอย่างยิ่งกับโมเดลทำนายและระบบซื้อขายอัตโนมัติ

โดยสรุปง่าย ๆ คือสถานะที่ยึดติดกับข้อมูลในอดีตเกินไป ทำให้ไม่สามารถรองรับข้อมูลในอนาคตได้

เหตุผลที่เกิดการโอเวอร์ฟิตติ้ง

โอเวอร์ฟิตติ้งเกิดขึ้นง่ายในสถานการณ์ต่อไปนี้:

  • โมเดลซับซ้อนเกินไป: โมเดลที่มีพารามิเตอร์มากเกินความจำเป็นจะเรียนรู้รายละเอียดของข้อมูลฝึกจนเกินไป
  • ขาดข้อมูล: เมื่อข้อมูลฝึกน้อย โมเดลมีแนวโน้มเรียนรู้รูปแบบข้อมูลจำกัดเกินไป
  • ตอบสนองต่อเสียงรบกวนเกินไป: โมเดลอาจเรียนรู้เสียงรบกวนในข้อมูลฝึกและมองว่าเป็นข้อมูลสำคัญ

ความสัมพันธ์กับการฟิตเส้นโค้ง

การฟิตเส้นโค้งหมายถึงการนำสูตรหรือฟังก์ชันที่ปรับให้เหมาะกับชุดข้อมูลเฉพาะมาใช้ แต่ถ้าเกินไปจะกลายเป็นโอเวอร์ฟิตติ้ง โดยเฉพาะเมื่อการฟิตเส้นโค้งทำเกินไป จะไม่สะท้อนแนวโน้มทั่วไปของข้อมูล แต่แค่วาดเส้นโค้งเฉพาะชุดข้อมูลนั้นเท่านั้น

2. ความเสี่ยงของการปรับแต่งเกินไป

การปรับแต่งเกินไปคืออะไร

การปรับแต่งเกินไปหมายถึงการปรับโมเดลหรือพารามิเตอร์ให้เหมาะสมเกินไปกับข้อมูลที่ใช้ในแบ็คเทสท์ ฯลฯ ทำให้ไม่สามารถให้ผลลัพธ์ตามที่คาดหวังในสภาพแวดล้อมการดำเนินงานจริงได้ นี่ก็เป็นรูปแบบหนึ่งของการโอเวอร์ฟิตติ้ง

ความเสี่ยงเฉพาะตัวจากการปรับแต่งเกินไป

  • การลดประสิทธิภาพในการดำเนินงานจริง: แม้จะมีผลลัพธ์สูงในแบ็คเทสท์ แต่ในข้อมูลที่ไม่รู้จักอาจทำงานได้ไม่ดีเลย
  • การลดความแม่นยำของการพยากรณ์: โมเดลที่พึ่งพาข้อมูลเฉพาะจะไม่สามารถพยากรณ์รูปแบบข้อมูลใหม่ได้อย่างถูกต้อง
  • การสูญเสียทรัพยากร: แม้จะใช้เวลาและค่าใช้จ่ายมากในการพัฒนาและดำเนินงาน แต่ผลลัพธ์อาจไม่เป็นประโยชน์ในที่สุด

พื้นที่ที่การปรับแต่งเกินไปเป็นปัญหาสำคัญ

  • การซื้อขายอัตโนมัติ FX: หากปรับระบบตามข้อมูลตลาดในอดีต อาจไม่สามารถปรับตัวเข้ากับสภาพตลาดที่เปลี่ยนแปลงได้
  • โมเดลการเรียนรู้เครื่อง: อัลกอริทึมที่ปรับแต่งเกินไปแม้จะแม่นยำกับข้อมูลฝึกสอน แต่ในข้อมูลจริงอาจมีอัตราความผิดพลาดสูง

3. วิธีป้องกันการโอเวอร์ฟิต

การใช้โมเดลที่เรียบง่าย

การลดความซับซ้อนของโมเดลเป็นหนึ่งในวิธีที่มีประสิทธิภาพที่สุดในการป้องกันการโอเวอร์ฟิต ตัวอย่างเช่น มีแนวทางดังต่อไปนี้:

  • จำกัดจำนวนพารามิเตอร์
  • ลบตัวแปรที่ไม่จำเป็นออก
  • ใช้อัลกอริทึมที่เรียบง่าย (เช่น การถดถอยเชิงเส้น)

การทดสอบแบบออฟ-ซัมพล์

โดยการแยกข้อมูลฝึกและข้อมูลทดสอบอย่างชัดเจน เราสามารถประเมินประสิทธิภาพการทั่วไปของโมเดลได้ การทดสอบโมเดลด้วยข้อมูล “ใหม่” ที่ไม่อยู่ในข้อมูลฝึกจะช่วยตรวจสอบความเป็นไปได้ของการโอเวอร์ฟิต

การใช้การตรวจสอบแบบข้าม

การตรวจสอบแบบข้าม (Cross‑Validation) คือวิธีการแบ่งชุดข้อมูลเป็นส่วนหลายส่วนแล้วใช้แต่ละส่วนเป็นข้อมูลทดสอบและข้อมูลฝึกสลับกัน วิธีนี้ทำให้สามารถประเมินโมเดลโดยไม่เอียงไปทางส่วนข้อมูลใดส่วนหนึ่ง

การจัดการความเสี่ยงอย่างเข้มงวด

การเสริมสร้างการจัดการความเสี่ยงช่วยลดความเสียหายจากการโอเวอร์อัปติไมซ์ได้อย่างมีประสิทธิภาพ วิธีต่อไปนี้เป็นวิธีที่มีประสิทธิภาพ:

  • จำกัดขนาดตำแหน่ง
  • ตั้งคำสั่งหยุดขาดทุน
  • ดำเนินการเทรดตามกฎที่กำหนดล่วงหน้า

4. กรณีจริงและตัวอย่างความสำเร็จ

ตัวอย่างโมเดลที่ประสบความสำเร็จ

ในโมเดลการเรียนรู้เครื่องบางตัว มีกรณีที่ใช้การถดถอยเชิงเส้นแบบง่ายทำให้ได้ผลลัพธ์ที่ดีกว่าเครือข่ายประสาทเทียมที่ซับซ้อนในการใช้งานจริง เนื่องจากโมเดลถูกออกแบบให้เน้นประสิทธิภาพการทั่วไป

ตัวอย่างที่มาตรการมีผล

ในระบบซื้อขายอัตโนมัติ FX เฉพาะตัว การใช้การตรวจสอบข้ามและการตั้งค่าพารามิเตอร์แบบง่ายทำให้ได้ผลการดำเนินงานที่เกือบเท่ากับระดับการทดสอบย้อนหลังในสภาพการใช้งานจริง

5. สรุป

โอเวอร์ฟิตติ้งและการปรับแต่งเกินไปเป็นปัญหาที่พบได้ทั่วไปในงานวิเคราะห์ข้อมูล การเรียนรู้ของเครื่อง และการซื้อขายอัตโนมัติ FX แต่หากเข้าใจความเสี่ยงเหล่านี้และดำเนินมาตรการที่เหมาะสม ก็สามารถเพิ่มผลลัพธ์ในการใช้งานจริงได้อย่างมาก โปรดใช้วิธีการต่าง ๆ เช่น การนำโมเดลที่เรียบง่ายมาใช้และการตรวจสอบแบบข้าม (cross-validation) อย่างกระตือรือร้น และนำไปใช้ในโปรเจกต์ของคุณเอง

บทความที่เกี่ยวข้อง

目次 1 1. Einführung2 2. Was ist die MathAbs-Funktion?2.1 Grundlegende Syntax2.2 Beispiel3 3. Grundlegende Verwendung der MathAbs-Funktion3.1 Berechnung des absoluten Werts der Preisunterschiede3.2 Umwa […]

目次 1 1. Giới thiệu2 2. Hàm OrderSend là gì2.1 Cấu trúc cơ bản của hàm OrderSend2.2 Giá trị trả về cơ bản2.3 Vai trò của hàm OrderSend3 3. Chi tiết các tham số của hàm OrderSend3.1 Giải thích chi tiết […]

目次 1 1. Apa Itu Overfitting?1.1 Definisi Overfitting1.2 Sebab Mengapa Overfitting Terjadi1.3 Hubungan dengan Curve Fitting2 2. Risiko Over-Optimisation2.1 Apa Itu Over-Optimisation?2.2 Risiko Khusus O […]

目次 1 1. Introduction2 2. Qu’est-ce que la fonction MathAbs ?2.1 Syntaxe de base2.2 Exemple3 3. Utilisation de base de la fonction MathAbs3.1 Calcul de la valeur absolue de la différence de prix3 […]

目次 1 1. Introdução2 2. O que é a função MathRound?2.1 Informações básicas sobre a função MathRound2.2 Razões para escolher a função MathRound3 3. Uso básico da função MathRound3.1 Exemplos da função M […]

การพัฒนา MQL (MQL4/MQL5)の最新記事8件